重要
Anaconda Inc. 为 anaconda.org 通道更新了其服务条款。 根据新的服务条款,如果依赖 Anaconda 的打包和分发,则可能需要商业许可证。 有关详细信息,请参阅 Anaconda Commercial Edition 常见问题解答。 对任何 Anaconda 通道的使用都受其服务条款的约束。
在 v1.18(Databricks Runtime 8.3 ML 或更低版本)之前记录的 MLflow 模型默认以 conda 通道 (https://repo.anaconda.com/pkgs/) 作为依赖项进行记录。 由于此许可证更改,Databricks 已停止对使用 MLflow v1.18 及更高版本记录的模型使用 通道。 记录的默认通道现在为 ,它指向社区管理的 https://conda-forge.org/。
如果在 MLflow v1.18 之前记录了一个模型,但没有从模型的 conda 环境中排除 通道,则该模型可能依赖于你可能没有预期到的 通道。 若要手动确认模型是否具有此依赖项,可以检查与记录的模型一起打包的 文件中的 值。 例如,具有 通道依赖项的模型 可能如下所示:
由于 Databricks 无法确定是否允许你根据你与 Anaconda 的关系使用 Anaconda 存储库来与模型交互,因此 Databricks 不会强制要求其客户进行任何更改。 如果允许你根据 Anaconda 的条款通过 Databricks 使用 Anaconda.com 存储库,则你不需要采取任何措施。
若要更改模型环境中使用的通道,可以使用新的 将模型重新注册到模型注册表。 为此,可以在 的 参数中指定该通道。
有关 API 的详细信息,请参阅所用模型风格的 MLflow 文档,例如用于 scikit-learn 的 log_model。
有关 文件的详细信息,请参阅 MLflow 文档。
到此这篇预训练模型下载(预训练模型可以直接用吗)的文章就介绍到这了,更多相关内容请继续浏览下面的相关推荐文章,希望大家都能在编程的领域有一番成就!版权声明:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若内容造成侵权、违法违规、事实不符,请将相关资料发送至xkadmin@xkablog.com进行投诉反馈,一经查实,立即处理!
转载请注明出处,原文链接:https://www.xkablog.com/bcyy/61356.html