“ 学习是一个从围观到宏观,从宏观到微观的一个过程 ”
今天整体梳理一下大模型技术的框架,争取从大模型所涉及的理论,技术,应用等多个方面对大模型进行梳理。
01大模型技术梳理
这次梳理大模型不仅仅是大模型本身的技术,而是一个以大模型为核心的涉及到多个方面的理论,技术和应用实践,也可以说是对自己学习大模型技术的总结吧。
话不多表,下面开始进入正题。
首先,大家应该明白一件事,大模型技术是人工智能技术的一个分支,是目前主流的一个研究方向,但并不是唯一的方向。
人工智能技术是一个通过某种技术手段人为的创建一个具有类人智能的系统(软件或硬件),而大模型技术是一种仿造人类学习进化的一种方式,使用深度学习(机器学习)算法模仿人类大脑神经元,来实现智能的一种方式,其主要载体是神经网络。
神经网络之所以得到发展的原因是因为,基于神经网络架构进行预训练之后,神经网络会产生一种无法解释的_涌现_能力,而这个涌现能力特别像是具有了智能一样。
_神经网络模型架构_
既然是模仿神经网络,那么就需要一种深度学习模型来模仿人类大脑神经系统,比如CNN(卷积神经网络),RNN(循环神经网络),以及目前主流的Transformer模型,还有LSTM,ResNet,GANs等。
神经网络的主要结构为一个输入层,一个输出层,以及隐藏层(一个或多个层组成),不同网络层之间使用_全连接_的方式进行连接,每一个圆都代表着一个神经元,如下图所示:
在神经网络中,除了输入/输出层之外,每一个神经元都有其参数,神经网络的效果就是由这些参数值决定的。
神经网络模型通过一种叫正向传播,损失计算和反向传播的方式来调整神经网络模型中每个神经元的参数。
通过把大量的训练数据输入到神经网络中,让神经网络进行“学习”(不断的调整参数),来达到类智能的能力。
不同神经网络的架构和实现有所不同,但其核心点都是基于此模型实现的,对想学习神经网络的朋友来说,先学会基础的神经网络架构,然后再针对不同的神经网络模型进行深化是最好的选择。
目前的大模型主要采用的是预训练的方式来实现智能的,简单来说就是给神经网络模型一堆资料,让它自己学,自己看,自己总结;其中给答案的叫做监督学习,没答案的叫无监督学习。
然后根据不同的任务需求,又设计出用来解决不同类型任务的神经网络,比如分类任务,图片处理任务,自然语言处理任务等。
至于大模型技术细节方面的东西,就不详细描述了,感兴趣的可以自己学习,比如编码器,损失计算和反向传播怎么实现等。
再有,设计并训练一个完整可用的神经网络模型是一个复杂的工程,比如模型的设计,训练数据的收集与处理,损失函数与反向传播算法的设计,模型过拟合,欠拟合等问题。
而且随着模型规模的增大,模型的训练难度成几何式增长,比如分布式训练,并行计算等问题;以及为了提升大模型的学习效率,节约成本而设计的强化学习,迁移学习等。
最后,为了使得大模型更像人,也为了实现真正的AGI(通用人工智能),现在多模态大模型大行其道,而多模态大模型技术比传统大模型的技术复杂度又上升了不止一个台阶。
_基于知识库的向量检索——RAG_
大模型技术虽然很强大,但其有几个明显的缺点,第一就是知识是有限制的,因为采用的是预训练方式,因此大模型的知识最多只能到训练开始的时间节点,之后产生的新的知识大模型无法获取。
其次,由于训练大模型的成本问题,导致很多企业无法承担大模型的训练成本,因此只能使用第三方的大模型,但第三方大模型没有在特定领域的数据上进行训练或微调,因此,其表现能力一般。
这时RAG就出现了,RAG中文是检索增强,是通过外挂知识库的方式,提问大模型之前先从向量数据库中查询数据,然后一起输入到大模型,这样大模型就相当于有了一个外部资料库,遇到不懂的问题就可以通过查资料的方式解决。
以目前的技术来说,RAG是大模型技术的一个重要节点,即是大模型能力范围的扩展,也是对大模型短板的补充。
微调与提示词工程
我们一般使用的大模型都是预训练模型,也就是用某些数据集训练过的模型;但这些模型一般情况下只会在特定领域表现出色,但如果用来解决自己的实际问题可能就不太好用了。
这时怎么让预训练模型在其它任务中表现更好就是一个值得思考的问题,而这就是微调与提示词工程存在的意义。
微调
微调从技术手段上来说和模型训练没有区别,只不过微调是在相似任务的预训练模型的基础之上,通过少量的数据对模型参数进行调整,使得其能够更加适应当前任务的一种方式。由于其成本低,对资金和技术要求要比完全重新设计和训练一款模型要低的多。
因此,微调存在的意义是为了节约成本和降低门槛,如果资金充足的情况下,根据任务需求设计并训练一款模型是最好的选择,微调是退而求其次的一种方式。
提示词工程
如果说微调是为了让大模型去适应特定的任务,那么提示词的作用就是怎么更好的使用一个大模型。
根据研究发现,对待同样的问题使用不同的提示词有时会得到完全不一样的效果,因此根据这一现象就提出了提示学习的方法,具体的可以看之前的问题——提示学习。
用人类来举例就是,假如有人问你吃饭了吗这种简单的问题,你可以下意识的回答,而且可以回答的很好;大模型也是如此,如果你问大模型很简单的问题,它也能回答的比较好。
但如果问到一些复杂的问题就需要更加准确的描述,比如说根据当前的就业环境,从经济,市场,贸易,国际局势等多个方面来分析一下产生当前情况的原因,以及后续的应对方法。
这种复杂的问题,不论是问人还是问大模型,你说的越准确,它回答的才能更好,这就是提示词存在的意义。
_智能体Agent_
在前面的描述中,神经网络架构讲的是怎么构建一个大模型,知识库是怎么补充和强化大模型,微调和提示词是怎么更好的使用大模型,那么智能体就是真正的使用大模型,研究大模型的具体应用。
如果把大模型比做人类的大脑,那么智能体就是大模型的手和脚。
在此之前使用大模型,我们能够让它回答问题,写文章,生成图片和视频,但这都是大模型天生具备的能力,就类似于人类可以写写画画一样。
但如果让大模型完成更加复杂的任务,这时就需要借助外部工具,比如外出旅行需要设计旅行路线,定酒店和车票等。
这种任务就完全超出大模型或者人类本身的能力圈,如果想完成这些任务就需要借助外部工具,比如说手机APP。
智能体就是大模型+外部工具实现的一种能够独自分析和解决复杂任务的一种载体,利用大模型的独立规划能力,让它根据自己的判断去调用外部工具完成任务。
使用的技术主要有function call,langchain等;如上图所示,大模型使用function call的方式调用外部工具,使用自身能力完成规划和行动,并且由于大模型没有足够的记忆能力,需要增加记忆模块来记录对复杂任务的分析过程。
目前,大模型解决复杂任务,主要通过思维链(CoT)的方式来实现对复杂问题的分解。
langchain是一种人工智能开发框架,它封装了大部分调用大模型的细节,以及其它辅助功能,比如文档的加载,多个大模型的链式调用,提示词模板的封装等,与其类似的还有LlamaIndex等。
总结
从大的方向上来说,大模型从技术到应用,主要涉及到以上几个大的模块;而每个模块又涉及到大量的技术和细节。比如打造不同任务的神经网络模型,强化学习,迁移学习,知识蒸馏,分布式训练与存储等;以及RAG使用的向量检索,向量数据库,语义理解等,还有复杂任务的思维链(CoT),模型训练使用的LoRa等微调方法。
还有多模态模型中的知识对齐,数据融合等复杂技术。
因此,大模型技术到应用到学习是一个系统性的复杂过程,中间涉及到无数的技术细节和理论,并且还在不断的产生新的技术和理论。
千里之行,始于足下。
个人观点
AI大模型百花齐放百家争鸣的时代已经是现实了,不管你愿不愿意承认,AI时代已经到来了。与其在AI抢占就业机会的危机中患得患失,不如快点接受这个新技术,将AI引入自己的工作中,通过AI来提升自己的生产力和创造力。打不过就加入,不丢人。顺应时代还有一线生机,顽固不化故步自封只能被时代的洪流碾碎。
无论你是刚入行的产品新手,还是经验丰富的资深产品经理,在AI时代下都需要不断拓展自己的技能边界,才能在未来的竞争中立于不败之地。
①人工智能/大模型学习路线
②AI产品经理入门指南
③大模型方向必读书籍PDF版
④超详细海量大模型实战项目
⑤LLM大模型系统学习教程
⑥640套-AI大模型报告合集
⑦从0-1入门大模型教程视频
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
2.大模型的优势
大模型最大的优势在于其强大的功能和广泛的应用。有时候,研究人员或开发者的需求不仅仅是快速的运行速度,而是能够处理复杂问题的能力。对于很多挑战性的任务,使用大模型能够大大减轻程序设计的负担,从而显著提高项目的质量。其易用性和灵活性也能让新手迅速上手。
虽然大模型在底层运算上可能不如一些特定的算法快速,但大模型清晰的结构和强大的能力能够解放开发者的大量时间,同时也能方便地与其他技术(如传统机器学习算法)结合使用。
因此,从来没有一种技术能够像大模型这样同时深入到这么多领域,并且大模型支持跨平台操作,也支持开源,拥有丰富的预训练模型。尤其随着人工智能的持续火热,大模型 在学术界和工业界的关注度持续攀升,越来越多的技术爱好者、行业关注者也都开始学习和应用大模型。
3、大模型学习建议
在学习大模型的过程中,不要因为自己的基础薄弱或者之前没有接触过相关领域就想要放弃。记住,很多人在起跑线前就选择退出,但只要你沉下心来,愿意付出努力,就一定能够掌握。在学习的过程中,一定要亲自动手去实践,因为只有通过编写代码、实际操作,你才能够逐渐积累经验。
同时,遇到错误和挑战也是不可避免的,甚至可以说是学习的一部分。当你遇到错误时,学会利用各种资源去解决,比如搜索引擎、开源论坛、社区和学习群组,这些都是你提升学习能力的好帮手。如果实在找不到错误的解决办法,可以来公众号或者相关学习平台上寻求帮助。
接下来,我为你提供一份大模型学习路径的参考,包括:基础知识了解、理论学习、实践操作、专项深入、项目应用、拓展研究等步骤。你可以根据这个路径,结合自己的实际情况,制定合适的学习计划。
这里,我分享一些学习大模型的历程和技巧。我最初接触大模型是因为工作需要,那时大模型还没有像现在这样普及,资料也相对较少。但通过坚持学习,我也逐渐掌握了大模型的应用。以下是一些建议:
- 先从了解大模型的基础知识开始,可以通过阅读相关书籍、学术论文或者参加在线课程。
学习过程中不要只看理论知识,一定要动手实践。可以尝试使用一些开源的大模型框架,如TensorFlow、PyTorch等,进行实际操作。 - 在掌握基础理论后,可以尝试参与一些实际项目,比如数据分析、自然语言处理、图像识别等,将理论应用到实践中。遇到问题时不要害怕,要学会利用网络资源、开源社区和专业论坛寻求帮助。
- 不断深化学习,可以参加一些专业培训课程,或者深入研究最新的学术论文,保持对大模型领域的最新动态的了解。
学习路上没有捷径,只有坚持。但通过学习大模型,你可以不断提升自己的技术能力,开拓视野,甚至可能发现一些自己真正热爱的事业。最后,送给你一句话,希望能激励你在学习大模型的道路上不断前行:
关于大模型技术储备
学好大模型不论是对就业还是开展副业赚钱都非常有利,但要想掌握大模型技术,还是需要有一个明确的学习规划。这里,我为大家分享一份完整的大模型学习资料,希望能帮助那些想要学习大模型的小伙伴们。
AI大模型入门基础教程
第1章 快速上手:人工智能演进与大模型崛起
1.1 从AI到AIOps
1.2 人工智能与通用人工智能
1.3 GPT模型的发展历程
第2章 大语言模型基础
2.1 Transformer 模型
- 嵌入表示层
- 注意力层
- 前馈层
- 残差连接与层归一化
- 编码器和解码器结构
2.2 生成式预训练语言模型 GPT
- 无监督预训练
- 有监督下游任务微调
- 基于 HuggingFace 的预训练语言模型实践
2.3 大语言模型结构
- LLaMA 的模型结构
- 注意力机制优化
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
第3章 大语言模型基础
3.1 数据来源
- 通用数据
- 专业数据
3.2 数据处理
- 低质过滤
- 冗余去除
- 隐私消除
- 词元切分
3.3 数据影响分析
- 数据规模影响
- 数据质量影响
- 数据多样性影响
3.4 开源数据集合
- Pile
- ROOTS
- RefinedWeb
- SlimPajama
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
第4章 分布式训练
- 数据并行
- 模型并行
- 混合并行
- 计算设备内存优化
4.3 分布式训练的集群架构
- 高性能计算集群硬件组成
- 参数服务器架构
- 去中心化架构
4.4 DeepSpeed 实践
- 基础概念
- LLaMA 分布式训练实践
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
第5章 有监督微调
5.1 提示学习和语境学习
- 提示学习
- 语境学习
5.2 高效模型微调
- LoRA
- LoRA 的变体
5.3 模型上下文窗口扩展
- 具有外推能力的位置编码
- 插值法
5.4 指令数据构建
- 手动构建指令
- 自动生成指令
- 开源指令数据集
5.5 Deepspeed-Chat SFT 实践
- 代码结构
- 数据预处理
- 自定义模型
- 模型训练
- 模型推
第6章 强化学习
6.1 基于人类反馈的强化学习
6.2 奖励模型
6.3 近端策略优化
6.4 MOSS-RLHF 实践
第7章 大语言模型应用
7.1 推理规划
7.2 综合应用框架
7.3 智能代理
7.4 多模态大模型
7.5 大语言模型推理优化
第8章 大语言模型评估
8.1 模型评估概述
8.2 大语言模型评估体系
8.3 大语言模型评估方法
8.4 大语言模型评估实践
黑客&网络安全如何学习
今天只要你给我的文章点赞,我私藏的网安学习资料一样免费共享给你们,来看看有哪些东西。
1.学习路线图
攻击和防守要学的东西也不少,具体要学的东西我都写在了上面的路线图,如果你能学完它们,你去就业和接私活完全没有问题。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己录的网安视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
内容涵盖了网络安全法学习、网络安全运营等保测评、渗透测试基础、漏洞详解、计算机基础知识等,都是网络安全入门必知必会的学习内容。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
🐵这些东西我都可以免费分享给大家,需要的可以点这里自取👉:网安入门到进阶资源
3.技术文档和电子书
技术文档也是我自己整理的,包括我参加大型网安行动、CTF和挖SRC漏洞的经验和技术要点,电子书也有200多本,由于内容的敏感性,我就不一一展示了。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
🐵这些东西我都可以免费分享给大家,需要的可以点这里自取👉:网安入门到进阶资源
4.工具包、面试题和源码
“工欲善其事必先利其器”我为大家总结出了最受欢迎的几十款款黑客工具。涉及范围主要集中在 信息收集、Android黑客工具、自动化工具、网络钓鱼等,感兴趣的同学不容错过。
还有我视频里讲的案例源码和对应的工具包,需要的话也可以拿走。
🐵这些东西我都可以免费分享给大家,需要的可以点这里自取👉:网安入门到进阶资源
最后就是我这几年整理的网安方面的面试题,如果你是要找网安方面的工作,它们绝对能帮你大忙。
这些题目都是大家在面试深信服、奇安信、腾讯或者其它大厂面试时经常遇到的,如果大家有好的题目或者好的见解欢迎分享。
参考解析:深信服官网、奇安信官网、Freebuf、csdn等
内容特点:条理清晰,含图像化表示更加易懂。
内容概要:包括 内网、操作系统、协议、渗透测试、安服、漏洞、注入、XSS、CSRF、SSRF、文件上传、文件下载、文件包含、XXE、逻辑漏洞、工具、SQLmap、NMAP、BP、MSF…
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
🐵这些东西我都可以免费分享给大家,需要的可以点这里自取👉:网安入门到进阶资源
————————————————
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
到此这篇模型部署入门教程(模型部署入门教程视频)的文章就介绍到这了,更多相关内容请继续浏览下面的相关推荐文章,希望大家都能在编程的领域有一番成就!版权声明:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若内容造成侵权、违法违规、事实不符,请将相关资料发送至xkadmin@xkablog.com进行投诉反馈,一经查实,立即处理!
转载请注明出处,原文链接:https://www.xkablog.com/hd-yjs/52183.html