当前位置:网站首页 > 数据工程 > 正文

特征工程怎么做(特征工程步骤)



 
 
   
 
点击上方 小白学视觉 ”,选择加" 星标 "或“ 置顶
 
  
    
  
重磅干货,第一时间送达
 
 
   
 
作者:Siddhartha Chandra 编译:ronghuaiyang
转自:AI公园
导读
只需要标注包围框就可以进行图像分割的训练。


手工分割(左)特征的图像,新的弱监督系统产生的分割
语义分割是将数字图像中的每一个像素自动标注为多个类别(人、猫、飞机、表等)中的一个,应用于基于内容的图像检索、医学图像和目标识别等。
对于标注者来说,在对象周围画一个边界框要比完全分割同一幅图像容易得多。
基于机器学习的语义分割系统通常是在目标边界已经精心手工标注过的图像上训练,这是一个耗时的操作。另一方面,目标检测系统可以对图像进行训练,在这些图像中,目标被称为边界框的矩形框框起来。对于人类标注者来说,手动分割一幅图像平均花费的时间是标记边界框的35倍。 在ECCV上发表的一篇论文中,我们描述了一个新的系统,我们称之为Box2Seg,它只使用边界框训练数据来学习分割图像,这是弱监督学习的一个例子。 在实验中,我们的系统在一个(mIoU)的度量上比以前的弱监督系统提高了2%,该度量度量了系统分割图像和手动分割图像之间的一致性。我们的系统的性能也可以与对一般图像数据进行预训练,然后对完全分割的数据进行训练相比。 此外,当我们使用弱监督方法训练系统,然后对完全分割的数据进行微调时,它比对一般图像数据进行预训练的系统性能提高了16%。这表明,即使分割训练数据可用,使用我们的弱监督方法进行预处理训练仍然有优势。 我们的方法是将边界框视为噪声标签。我们把框里的每个像素当作我们要寻找的边界的对象的一部分,然而,其中一些像素被错误地标记了。框外的所有像素都被正确标记为背景像素。 在训练过程中,我们系统的输入通过三个卷积神经网络:一个目标分割网络和两个辅助网络。在运行过程中,我们丢弃了辅助网络,这样它们就不会增加已部署系统的复杂性。
研究人员训练模型的架构。由GrabCut分割算法(M)提供的包围框本身(B)和粗分割的位置有助于监督目标分割网络(θy)和两个辅助网络(θa和θb)的训练。
其中一个辅助网络对图像中的像素进行两两比较,试图学习区分背景和前景的一般方法。直观地说,它是在边界框内寻找与框外正确标记的背景像素相似的像素,并在框内寻找彼此不同的像素簇。我们称这个网络为“嵌入”网络,因为它可以学习像素的向量表示,即嵌入,这些像素只捕捉那些对区分背景和前景有用的属性。 我们使用一种叫做GrabCut的标准分割算法提供的相对粗糙的分割来预先训练嵌入网络。在训练过程中,嵌入网络的输出为目标分割网络提供监督信号,也就是说,我们用来评价嵌入网络性能的标准之一是其输出与嵌入网络的输出是否一致。
由研究者的嵌入网络确定的“亲和性”的例子。较亮的区域表示像素,表明网络得出的结论是有一些共同之处。
另一个辅助网络是特定标签注意力网络。它学会识别具有相同标签的边框内像素之间频繁出现的视觉属性。可以将其视为一个目标检测器,其输出不是一个目标标签,而是一个突出显示特定对象类的像素簇特征的图像映射。
从左到右:手动分割图像,边界框与GrabCut算法提供的粗分割相结合,边界框与研究人员的标签特定注意网络输出相结合。在第三对图像中,光谱的红色端表示经常出现在带有特定标签的边界框内的图像特征。在训练过程中,目标分割网络应特别注意这些特征。
在使用标准基准数据集的实验中,我们发现,仅使用边界框训练数据,Box2Seg比使用完全分割训练数据训练的其他12个系统表现得更好。当使用Box2Seg训练的网络在完全分段的数据上进行微调时,性能改进甚至更显著。这表明,当没有完全分割的训练数据时,甚至在完全分割的训练数据可用时,对象分割的弱监督训练可能是有用的。
英文原文:https://www.amazon.science/blog/learning-to-segment-images-without-manually-segmented-training-data
 
   
     
   
声明:部分内容来源于网络,仅供读者学习、交流之目的。文章版权归原作者所有。如有不妥,请联系删除。
 
      
        
      
下载1:OpenCV-Contrib扩展模块中文版教程
在「小白学视觉」公众号后台回复: 扩展模块中文教程 即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。

下载2:Python视觉实战项目52讲
小白学视觉公众号后台回复:Python视觉实战项目即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。

下载3:OpenCV实战项目20讲
小白学视觉公众号后台回复:OpenCV实战项目20讲即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。

交流群

欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~

到此这篇特征工程怎么做(特征工程步骤)的文章就介绍到这了,更多相关内容请继续浏览下面的相关推荐文章,希望大家都能在编程的领域有一番成就!

版权声明


相关文章:

  • 特征工程怎么做(特征工程是什么)2024-12-16 12:18:09
  • 数据特征工程的含义(数据特征工程的含义和特点)2024-12-16 12:18:09
  • 存储工程师面试题目(存储工程师职责)2024-12-16 12:18:09
  • 数据特征工程常用方法(数据分析特征工程)2024-12-16 12:18:09
  • 特征工程包含(特征工程包含哪三个方面?)2024-12-16 12:18:09
  • 数据特征工程(数据特征工程常用方法)2024-12-16 12:18:09
  • 特征工程的目的(特征工程的目的不包括)2024-12-16 12:18:09
  • 特征工程是啥(特征工程是什么)2024-12-16 12:18:09
  • 特征工程的意义(特征工程的意义和价值)2024-12-16 12:18:09
  • 特征工程怎么做(特征工程特征选择)2024-12-16 12:18:09
  • 全屏图片