数据挖掘(Data Mining)就是从大量的数据中,提取隐藏在其中的,事先不知道的、但潜在有用的信息的过程。数据挖掘的目标是建立一个决策模型,根据过去的行动数据来预测未来的行为。比如分析一家公司的不同用户对公司产品的购买情况,进而分析出哪一类客户会对公司的产品有兴趣。在讲究实时、竞争激烈的网络时代,若能事先激活成功教程消费者的行为模式,将是公司获利的关键因素之一。数据挖掘是一门交叉学科,它涉及了数据库,人工智能,统计学,可视化等不同的学科和领域。
数据挖掘是数据库中知识发现(knowledge discovery in database, KDD)不可缺少的一部分,而KDD是将未加工的数据转换为有用信息的整个过程,该过程包括一系列转换步骤, 从数据的预处理到数据挖掘结果的后处理。
数据挖掘的起源
来自不同学科的研究者汇集到一起,开始着手开发可以处理不同数据 类型的更有效的、可伸缩的工具。这些工作都是建立在研究者先前使用的方法学和算法之上,而在数据挖掘领域达到高潮。特别地,数据挖掘利用了来自如下一些领域的思想:(1)来自统计学的抽样、估计和假设检验;(2)人工智能、模式识别和机器学习的搜索算法建模技术和学习理论。数据挖掘也迅速地接纳了来自其他领域的思想,这些领域包括最优化、进化计算、信息论、信号处理、可视化和信息检索。
一些其他领域也起到重要的支撑作用。数据库系统提供有效的存储、索引和查询处理支持。源于高性能(并行)计算的技术在处理海量数据集方面常常是重要的。分布式技术也能帮助处理海量数据,并且当数据不能集中到一起处理时更是至关重要。
KDD(Knowledge Discovery from Database)
- 数据清理
消除噪声和不一致的数据; - 数据集成
多种数据源可以组合在一起; - 数据选择
从数据库中提取与分析任务相关的数据; - 数据变换
通过汇总或聚集操作,把数据变换和统一成适合挖掘的形式; - 数据挖掘
基本步骤,使用智能方法提取数据模式; - 模式评估
根据某种兴趣度,识别代表知识的真正有趣的模式; - 知识表示
使用可视化和知识表示技术,向用户提供挖掘的知识。
数据挖掘方法论
- 业务理解(business understanding)
从商业角度理解项目的目标和要求,接着把这些理解知识通过理论分析转化为数据挖掘可操作的问题,制定实现目标的初步规划; - 数据理解(data understanding)
数据理解阶段开始于原始数据的收集,然后是熟悉数据、甄别数据质量问题、探索对数据的初步理解、发觉令人感兴趣的子集以形成对探索信息的假设; - 数据准备(data preparation)
数据准备阶段指从最初原始数据中未加工的数据构造数据挖掘所需信息的活动。数据准备任务可能被实施多次,而且没有任何规定的顺序。这些任务的主要目的是从源系统根据维度分析的要求,获取所需要的信息,需要对数据进行转换、清洗、构造、整合等数据预处理工作; - 建模(modeling)
在此阶段,主要是选择和应用各种建模技术。同时对它们的参数进行调优,以达到最优值。通常对同一个数据挖掘问题类型,会有多种建模技术。一些技术对数据形式有特殊的要求,常常需要重新返回到数据准备阶段; - 模型评估(evaluation)
在模型部署发布前,需要从技术层面判断模型效果和检查建立模型的各个步骤,以及根据商业目标评估模型在实际商业场景中的实用性。此阶段关键目的是判断是否存在一些重要的商业问题仍未得到充分考虑; - 模型部署(deployment)
模型完成后,由模型使用者(客户)根据当时背景和目标完成情况,封装满足业务系统使用需求。
数据挖掘任务
通常,数据挖掘任务分为下面两大类。
- 预测任务。这些任务的目标是根据其他属性的值,预测特定属性的值。被预测的属性一 般称目标变量(targetvariable)或因变量(dependentvariable), 而用来做预测的属性称说明变量(explanatoryvariable)或自变量(independentvariable)。
- 描述任务。其目标是导出概括数据中潜在联系的模式(相关、趋势、聚类、轨迹和异常)。本质上,描述性数据挖掘任务通常是探查性的,并且常常需要后处理技术验证和解释结果。
预测建模(predictivemodeling) 涉及以说明变量函数的方式为目标变量建立模型。有两类预测建模任务:分类(classification),用于预测离散的目标变量;回归(regression),用于预测连续的目标变量。例如,预测一个Web用户是否会在网上书店买书是分类任务,因为该目标变量是二值的,而预测某股票的未来价格则是回归任务,因为价格具有连续值属性。两项任务目标都是训练一个模型,使目标变量预测值与实际值之间的误差达到最小。预测建模可以用来确定顾客对产品促销活动的反应,预测地球生态系统的扰动,或根据检查结果判断病人是否患有某种疾病。
关联分析(association analysis) 用来发现描述数据中强关联特征的模式。所发现的模式通常用蕴涵规则或特征子集的形式表示。由于搜索空间是指数规模的,关联分析的目标是以有效的方式提取最有趣的模式。关联分析的应用包括找出具有相关功能的基因组、识别用户一起访问的Web页面、 理解地球气候系统不同元素之间的联系等。
聚类分析(cluster analysis)旨在发现紧密相关的观测值组群,使得与属于不同簇的观测值相比, 属于同一簇的观测值相互之间尽可能类似。聚类可用来对相关的顾客分组、找出显著影响 地球气候的海洋区域以及压缩数据等。
异常检测(anomaly detection) 的任务是识别其特征显著不同于其他数据的观测值。这样的观测值称为异常点(anomaly)或离群点(outlier)。异常检测算法的目标是发现真正的异常点,而避免错误地将正常的对象标注为异常点换言之,一个好的异常检测器必须具有高检测率和低误报率。异常检测的应用包括检测欺诈、网络攻击、疾病的不寻常模式、生态系统扰动等。
数据挖掘方法
数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性(属于Associationrulelearning)的信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。
数据挖掘的步骤会随不同领域的应用而有所变化,每一种数据挖掘技术也会有各自的特性和使用步骤,针对不同问题和需求所制定的数据挖掘过程也会存在差异。
此外,数据的完整程度、专业人员支持的程度等都会对建立数据挖掘过程有所影响。这些因素造成了数据挖掘在各不同领域中的运用、规划,以及流程的差异性,即使同一产业,也会因为分析技术和专业知识的涉入程度不同而不同,因此对于数据挖掘过程的系统化、标准化就显得格外重要。如此一来,不仅可以较容易地跨领域应用,也可以结合不同的专业知识,发挥数据挖掘的真正精神。
原则上讲,数据挖掘可以应用于任何类型的信息存储库及瞬态数据(如数据流),如数据库、数据仓库、数据集市、事务数据库、空间数据库(如地图等)、工程设计数据(如建筑设计等)、多媒体数据(文本、图像、视频、音频)、网络、数据流、时间序列数据库等。也正因如此,数据挖掘存在以下特点:
(1)数据集大且不完整
数据挖掘所需要的数据集是很大的,只有数据集越大,得到的规律才能越贴近于正确的实际的规律,结果也才越准确。除此以外,数据往往都是不完整的。
(2)不准确性
数据挖掘存在不准确性,主要是由噪声数据造成的。比如在商业中用户可能会提供假数据;在工厂环境中,正常的数据往往会收到电磁或者是辐射干扰,而出现超出正常值的情况。这些不正常的绝对不可能出现的数据,就叫做噪声,它们会导致数据挖掘存在不准确性。
(3)模糊的和随机的
数据挖掘是模糊的和随机的。这里的模糊可以和不准确性相关联。由于数据不准确导致只能在大体上对数据进行一个整体的观察,或者由于涉及到隐私信息无法获知到具体的一些内容,这个时候如果想要做相关的分析操作,就只能在大体上做一些分析,无法精确进行判断。
而数据的随机性有两个解释,一个是获取的数据随机;我们无法得知用户填写的到底是什么内容。第二个是分析结果随机。数据交给机器进行判断和学习,那么一切的操作都属于是灰箱操作。
那属于数据挖掘方法的是
1、神经元网络办法
神经元网络由于本身优良的健壮性、自组织自适应性、并行计算、遍及贮存和高宽比容错机制等特色特别适合处理数据发掘的难题,因而近些年愈来愈遭受大家的关心。
2、遗传算法
遗传算法是一种依据微生物自然选择学说与基因遗传原理的恣意优化算法,是一种仿生技能全局性提升办法。遗传算法具有的暗含并行性、便于和其他实体模型交融等特性促使它在数据发掘中被多方面运用。
3、决策树算法办法
决策树算法是一种常见于预测模型的优化算法,它依据将很多数据信息有目地归类,从这当中寻找一些有使用价值的,潜在性的信息。它的要害优势是叙说简易,归类速度更快,十分适宜规模性的数据处理办法。
4、遮盖正例抵触典例办法
它是使用遮盖正例抵触典例的观念来找寻规范。遮盖正例抵触典例最先在正例结合中随意选择一个种子,到典例结合中逐一对正。与字段名赋值组成的选择子相溶则舍弃,反过来则保存。按此观念循环系统悉数正例种子,将获得正例的规范(选择子的合取式)。
5、数据剖析办法
在数据库查询字段名项中心存有二种相关:函数关系和相关数据剖析,对他们的数据剖析可选用应用统计学办法,即使用统计学原理对数据库查询中的信息展开剖析。可展开常见统计剖析、多元回归剖析、相关性剖析、差异剖析等。
6、含糊集办法
即使用含糊不清结合基础理论对具体难题展开含糊不清评定、含糊不清管理决策、含糊不清系统识别和含糊聚类剖析。系统软件的多元性越高,抽象性越强,一般含糊不清结合基础理论是用从属度来描绘含糊不清事情的亦此亦彼性的。
到此这篇什么是数据挖掘?_数据分析一般用什么软件的文章就介绍到这了,更多相关内容请继续浏览下面的相关推荐文章,希望大家都能在编程的领域有一番成就!版权声明:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若内容造成侵权、违法违规、事实不符,请将相关资料发送至xkadmin@xkablog.com进行投诉反馈,一经查实,立即处理!
转载请注明出处,原文链接:https://www.xkablog.com/kjbd-sjwj/5453.html