编辑导语:在做数据分析时,不少人都无法深入数据,洞察到数据背后的价值所在,所做的仅仅是描述性分析。那么,如何才能建立深入且有价值的数据分析维度?本篇文章里,作者对如何打破描述性分析的困境做了解读,一起来看。
经常有同学抱怨:感觉平时做的都是描述性统计,同比、环比,深入的数据分析到底怎么做?今天系统地讲解一下。话不多说,直接上干货。
一、常见的描述性统计
举个简单的例子,让分析:为啥业绩下降了。很多同学的做法,就是拿本月和上月做对比,然后分产品、地区、分公司等维度做交叉。最后发现:A产品业绩下降10%,B产品下降6%……再多做一步,可能算个整体下降5%,然后把各个产品下降超过5%的标红。这就算做完分析了。
这么做当然不深入!这样做有三宗罪:
一来,没有发现问题重点。经常几个维度都在下降,哪个是重点???
二来,没有解答业务的问题。下降5%只是个数字,业务的问题是:到底是我的产品不行、还是渠道不行、还是大环境不行???
三来,没有指向改进建议。我知道了A产品下降5%,所以呢?所以要把A换掉吗?要再追加营销费吗?要做培训吗?统统不知道?
想破局,当然不能这么无脑就数论数,而是要从:数据背后的业务含义开始做起。
二、改进第一步:建立分析假设
真正的业务问题是:
这些才是真正的问题,并且这些问题是指向改进建议的:
- 营销力度不足 → 追加活动投入;
- 新产品表现不好 → 寻找替代产品;
- 分公司管理不善 → 撤换分公司经理。
但是,这些业务问题,是不能用一个指标简单描述,而是需要指标+标签,进行综合性描述。
比如营销力度不足,至少可以拆成三个分析假设:
- 活动形式改变(用标签:形式A、形式B);
- 优惠幅度下降(原先打八折、现在打九折);
- 覆盖产品减少(原先60%产品参加活动,现在40%)。
经过梳理,把业务问题,拆解成可以用数据指标量化的分析假设,就能做进一步分析了。
而进一步分析的重点,就是:找到足够多的数据证据。比如这里有一条假设:营销覆盖产品减少,导致业绩下降。那么就得看数据上,是否非活动产品下降很厉害,活动产品下降很少。类似的,每一条假设都有证据,则可以汇总一个结论:就是营销力度不足,导致了业绩下滑问题。
三、改进第二步:聚焦重点问题
注意,假设方向不止一个。比如我们给出“营销力度不足”的结论以后,大家会自然反问:难道只有营销的问题吗?难道分公司管理没有问题吗?难道产品没有问题吗?
这一步,需要帮助大家清理其他假设,聚焦到核心问题上。这里有个简单的判断方法:哪个问题影响更大。
比如我想证明:营销力度影响,比产品的影响更大。那么我要列举的假设是:
- 一直无活动的产品,前后变化不大;
- 原本有活动,现在没活动的产品,变化巨大;
- 原本有活动,现在力度下降很大的产品,变化巨大;
- 原本有活动,现在力度下降很小的产品,变化很小。
这样有了充足的正反例子,能做实:营销力度就是影响很大,就可以剔除产品的影响了。
这一步的分析,需要大量的的正反例子证据,是非常消耗精力的。要求分析人员有严密的逻辑梳理与大量细节数据论证。而且在这个过程中,很有可能发现大量的特例,让结论很难下。比如感觉上营销力度下降影响最大,可是有些产品就是很坚挺,有些分公司就是一直烂。
如果真出现很多特例,其实是个好事,说明:业绩不是单一因素影响的。这时候需要用MECE法,把特例的逻辑关系一一梳理出来。(这里不再赘述MECE的构建方式,有兴趣的同学看以前的分享哈)。最后效果如下图:
这个时候,作为一个分析原因的报告,已经可以交差的七七八八了。但是还可以再多做几步。
结论:就是营销力度不足,导致了业绩下滑问题。
四、改进第三步:评估未来走势
注意:降低营销力度,会影响业绩,这个是不用分析也知道的。即使做实了这一点,很有可能还是落一句:我早知道了。反问一句:为什么明知道会有问题,还是会降低力度?很有可能是大家担心:费用会爆表。
所以可以多做一步评估:
- 按目前的投产比+投入力度,下个月还会不会降,能否守住全年目标;
- 如果想让业绩不降,保持之前投入力度,费用会不会爆、啥时候爆。
提及预测,很多同学闻风色变,觉得很难。实际上,只要不是输出名单的预测,都没那么可怕。在分析问题的时候做预测,给出预计走势,支持决策判断即可。比如这里预计营销费用与业绩关系,完全可以用简单的时间序列/线性回归,给出走势即可。可以做滚动预测/业务假设预测,用公式推导(如下图)。
预测完了给预判,优先给问题严重级别,再给细节。对问题级别的判断会比细节数字更重要,比如营销费用失控问题,可以分作:
- 严重:必须马上调整,不然超支严重;
- 一般:有几个月过渡期,还能做尝试;
- 轻松:不调整也能扛过去。
严重性的判断是能直接指向决策的
- 严重:立即找对策,马上调整;
- 一般:再尝试几次,总结经验;
- 轻松:既然调了会影响,就改回去吧。
有了方向性判断,再看下一步执行细节分析。
五、改进第四步:给出建议细节
有了第三步的支撑,第四步给的建议才会显得有理有据。不至于犯“我们都决定弃船了,你还在讨论怎么堵窟窿”的问题。比如第三步判断还可以再试几次,那就可以进一步看:
- 挑选出对促销不敏感的商品,砍掉补贴;
- 挑选出低毛利的商品,直接砍掉补贴;
- 挑选出撤出促销后波动少的商品,逐步消减补贴;
- 找到对价格不敏感的客群,逐步增加他们喜欢的商品,扩大其基数。
这里,这里会延伸出好几个话题,需要每一个话题单独做分析。比如用户分群,可以做矩阵分析,先锁定人群,再看其商品爱好(如下图):
比如商品分析,可以先核算成本,再看促销敏感性(如下图):
这样可以给出消减成本的方向,人、货、场因素都有了,可执行程度也很好。
六、小结
综上过程我们发现:想让分析有深入,关键在于组织分析逻辑。
- 分析逻辑要直面业务问题;
- 把业务问题转化成数据描述;
- 排除小因素干扰,逐步聚焦核心问题;
- 行动建议,建立在整体走势预判之上;
- 行动建议,有细节数据支持。
这样才可以把分析越做越深,而且能积累对业务有用的结论。
在这个过程中,分析方法是相互穿插的。有常见的描述性统计、对比分析,也可以结合预测模型,也可以结合数据测试,判断方法可行性。
但是整体的分析逻辑,是不受具体方法制约的,一定是现有大的逻辑框架,再选择工具,才能得出有价值的结论。
而实际工作中,很多同学是卡在第一步的:不了解业务,没有业务问题,只有简单几个维度交叉,同比环比,自然不够深入了。
#专栏作家#
接地气的陈老师,微信公众号:接地气学堂,人人都是产品经理专栏作家。资深咨询顾问,在互联网,金融,快消,零售,耐用,美容等15个行业有丰富数据相关经验。
本文原创发布于人人都是产品经理。未经许可,禁止转载。
题图来自 Unsplash,基于CC0协议。
到此这篇总做描述性统计,深入的数据分析到底怎么做?_描述性统计在数据分析的作用的文章就介绍到这了,更多相关内容请继续浏览下面的相关推荐文章,希望大家都能在编程的领域有一番成就!版权声明:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若内容造成侵权、违法违规、事实不符,请将相关资料发送至xkadmin@xkablog.com进行投诉反馈,一经查实,立即处理!
转载请注明出处,原文链接:https://www.xkablog.com/kjbd-tjx/5868.html