当前位置:网站首页 > MATLAB编程 > 正文

matlab function多输出(matlab多输入多输出建模)



目录

  • 多输入多输出 | MATLAB实现TCN(时间卷积神经网络)多输入多输出预测
  • 预测效果
  • 基本介绍
  • 模型描述
  • 程序设计
  • 学习小结
  • 参考资料

预测效果

多输入多输出 | MATLAB实现TCN(时间卷积神经网络)多输入多输出预测_多输入多输出

多输入多输出 | MATLAB实现TCN(时间卷积神经网络)多输入多输出预测_多输入多输出_02

多输入多输出 | MATLAB实现TCN(时间卷积神经网络)多输入多输出预测_回归预测_03

多输入多输出 | MATLAB实现TCN(时间卷积神经网络)多输入多输出预测_多输入多输出_04

多输入多输出 | MATLAB实现TCN(时间卷积神经网络)多输入多输出预测_时间卷积神经网络_05

多输入多输出 | MATLAB实现TCN(时间卷积神经网络)多输入多输出预测_卷积_06

基本介绍

MATLAB实现TCN(时间卷积神经网络)多输入多输出预测,运行环境Matlab2021b及以上。
1.data为数据集,10个输入特征,3个输出变量。
2.MainTCNM.m为主程序文件,运行环境Matlab2021b及以上。

模型描述

Lea等人(2016)的开创性工作首次提出了用于基于视频的动作分割的时间卷积网络(tns)。这个传统的过程包括两个步骤:第一,使用(通常)编码时空信息的CNN计算低级特征;第二,使用(通常)RNN将这些低级特征输入到一个获取高级时间信息的分类器中。这种方法的主要缺点是它需要两个独立的模型。TCN提供了一种统一的方法来以层次的方式捕获所有两个级别的信息。随着严等人(2020)最近发表的有关TCN用于天气预报任务的研究成果,TCN上甚至出现了有关TCN的讨论。在他们的工作中,进行了TCN和LSTM的对比实验。他们的结果之一是,在其他方法中,TCN在时间序列数据的预测任务中表现良好。TCN的卷积和普通1D卷积最大的不同就是用了扩张卷积(dilated convolutions),越到上层,卷积窗口越大,而卷积窗口中的“空孔”越多。由于扩展的卷积使网络能够处理各种输入,因此可能需要更深入的网络(在反向传播过程中会受到不稳定的梯度影响)。编码器-解码器模块的解决方案可以帮助设计实际的大规模应用。

程序设计

  • 完整源码和数据获取方式:私信博主回复MATLAB实现TCN(时间卷积神经网络)多输入多输出预测

学习小结

TCN可以接受任意长度的序列,并将其输出为相同长度。因果卷积在使用一维全卷积网络结构时使用。一个关键的特征是t时刻的输出只与t之前的元素进行卷积。

到此这篇matlab function多输出(matlab多输入多输出建模)的文章就介绍到这了,更多相关内容请继续浏览下面的相关推荐文章,希望大家都能在编程的领域有一番成就!

版权声明


相关文章:

  • matlab函数与脚本(matlab函数脚本中变量的取值不同怎么输入)2025-04-13 16:27:04
  • matlab天蓝色颜色代码(matlab蓝色线)2025-04-13 16:27:04
  • matlab函数输入参数不足(matlab说输入参数不足)2025-04-13 16:27:04
  • Cmip6降尺度(cmip6降尺度matlab)2025-04-13 16:27:04
  • matlab中脚本和函数区别(matlab脚本和函数合起来运行)2025-04-13 16:27:04
  • matlab函数输入参数太多怎么办(matlab函数输入的参数数目不足)2025-04-13 16:27:04
  • matlab函数与脚本(matlab函数脚本符号运算)2025-04-13 16:27:04
  • matlab函数输入的参数数目不足(matlab 输入的参数数目不足)2025-04-13 16:27:04
  • matlab函数文件和脚本文件的区别(matlab函数文件和脚本文件的区别)2025-04-13 16:27:04
  • matlab函数怎么写ln(matlab函数写法)2025-04-13 16:27:04
  • 全屏图片