一、时间序列的定义
时间序列是将统一统计值按照时间发生的先后顺序来进行排列,时间序列分析的主要目的是根据已有数据对未来进行预测。
一个稳定的时间序列中常常包含两个部分,那么就是:有规律的时间序列+噪声。所以,在以下的方法中,主要的目的就是去过滤噪声值,让我们的时间序列更加的有分析意义。
二、时间序列的预处理
1、平稳性检验:
拿到一个时间序列之后,我们首先要对其稳定性进行判断,只有非白噪声的稳定性时间序列才有分析的意义以及预测未来数据的价值。
所谓平稳,是指统计值在一个常数上下波动并且波动范围是有界限的。如果有明显的趋势或者周期性,那么就是不稳定的。一般判断有三种方法:
- 画出时间序列的趋势图,看趋势判断
- 画自相关图和偏相关图,平稳时间序列的自相关图和偏相关图,要么拖尾,要么截尾。
- (关于拖尾截尾的概念:https://blog.csdn.net/xianyuhenxian/article/details/)
- 检验序列中是否存在单位根,如果存在单位根,就是非平稳时间序列。
- (关于单位根检验:http://bbs.pinggu.org/thread-2412454-1-1.html)
在R语言中,DF检测是一种检测稳定性的方法,如果得出的P值小于临界值,则认为是数列是稳定的。
2、白噪声检验
白噪声序列,又称为纯随机性序列,序列的各个值之间没有任何的相关关系,序列在进行无序的随机波动,可以终止对该序列的分析,因为从白噪声序列中是提取不到任何有价值的信息的。
3、平稳时间序列的参数特点
均值和方差为常数,并且具有与时间无关的自协方差。
三、时间序列建模步骤
- 拿到被分析的时间序列数据集。
- 对数据绘图,观测其平稳性。若为非平稳时间序列要先进行d阶差分运算后化为平稳时间序列,此处的d即为ARIMA(p,d,q)模型中的d;若为平稳序列,则用ARMA(p,q)模型。所以ARIMA(p,d,q) 模型区别于ARMA(p,q)之处就在于前者的自回归部分的特征多项式含有d个单位根。
- 对得到的平稳时间序列分别求得其自相关系数ACF 和偏自相关系数PACF,通过对自相关图和偏自相关图的分析,得到最佳的阶层 p 和阶数 q。由以上得到的d、q、p ,得到ARIMA模型。
- 模型诊断。进行诊断分析,以证实所得模型确实与
版权声明:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若内容造成侵权、违法违规、事实不符,请将相关资料发送至xkadmin@xkablog.com进行投诉反馈,一经查实,立即处理!
转载请注明出处,原文链接:https://www.xkablog.com/rfx/1369.html