当前位置:网站首页 > R语言数据分析 > 正文

resnet模型(ResNet模型)

好的,您想把自定义的

CNN 模型

改为

ResNet 模型

,这是可以实现的。

ResNet

是一种深度卷积

神经网络

,它通过引入残差连接(Residual Connection)来解决深度网络训练中的梯度消失问题。以下是将自定义

CNN 模型

改为

ResNet 模型

的步骤:

1. 导入必要的库

 import torch import torch.nn as nn import torch.nn.functional as F 

2. 定义

ResNet 模型
 class ResNet (nn.Module): def __init__(self): super( ResNet , self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(64, 3) self.layer2 = self._make_layer(128, 4, stride=2) self.layer3 = self._make_layer(256, 6, stride=2) self.layer4 = self._make_layer(512, 3, stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * 1 * 1, 10)  def _make_layer(self, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes), )  layers = [] layers.append(BasicBlock(self.inplanes, planes, stride, downsample)) self.inplanes = planes for _ in range(1, blocks): layers.append(BasicBlock(self.inplanes, planes))  return nn.Sequential(*layers)  def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x)  x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x)  x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x)  return x 

3. 定义

ResNet

中的BasicBlock

 class BasicBlock(nn.Module): expansion = 1  def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride  def forward(self, x): identity = x  out = self.conv1(x) out = self.bn1(out) out = self.relu(out)  out = self.conv2(out) out = self.bn2(out)  if self.downsample is not None: identity = self.downsample(x)  out += identity out = self.relu(out)  return out 

这里定义的

ResNet 模型

包含4个layer,每个layer中包含多个BasicBlock。BasicBlock是

ResNet

中的基本模块,它通过残差连接将输入直接加到输出中,从而避免了梯度消失的问题。

4. 实例化

ResNet 模型
 model = ResNet () 

这样就完成了自定义的

CNN 模型

ResNet 模型

的转换。如果您需要训练这个

模型

,可以使用

PyTorch

提供的训练框架进行训练。

到此这篇resnet模型(ResNet模型)的文章就介绍到这了,更多相关内容请继续浏览下面的相关 推荐文章,希望大家都能在编程的领域有一番成就!

版权声明


相关文章:

  • springboot用户密码加密(spring boot 密码加密)2025-03-11 16:27:04
  • Resnet101运行硬件要求(resnet101代码)2025-03-11 16:27:04
  • srore的中文翻译(sorcerer翻译)2025-03-11 16:27:04
  • treeworld破解版无限(treeagepro破解版)2025-03-11 16:27:04
  • resnet50和101哪个好(resnet50 101)2025-03-11 16:27:04
  • neoterm更换国内源(fedora更换国内源)2025-03-11 16:27:04
  • ldr指令的使用方法(ldr指令的功能)2025-03-11 16:27:04
  • spring教程菜鸟(spring入门)2025-03-11 16:27:04
  • mha是什么意思二次元(二次元mmr是什么意思)2025-03-11 16:27:04
  • vscode工程配置(vscode配置rem)2025-03-11 16:27:04
  • 全屏图片