好的,您想把自定义的
CNN 模型改为
ResNet 模型,这是可以实现的。
ResNet是一种深度卷积
神经网络,它通过引入残差连接(Residual Connection)来解决深度网络训练中的梯度消失问题。以下是将自定义
CNN 模型改为
ResNet 模型的步骤:
1. 导入必要的库
import torch
import torch.nn as nn
import torch.nn.functional as F
2. 定义
ResNet 模型class
ResNet(nn.Module):
def __init__(self):
super(
ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(64, 3)
self.layer2 = self._make_layer(128, 4, stride=2)
self.layer3 = self._make_layer(256, 6, stride=2)
self.layer4 = self._make_layer(512, 3, stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * 1 * 1, 10)
def _make_layer(self, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes),
)
layers = []
layers.append(BasicBlock(self.inplanes, planes, stride, downsample))
self.inplanes = planes
for _ in range(1, blocks):
layers.append(BasicBlock(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
3. 定义
ResNet中的BasicBlock
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
这里定义的
ResNet 模型包含4个layer,每个layer中包含多个BasicBlock。BasicBlock是
ResNet中的基本模块,它通过残差连接将输入直接加到输出中,从而避免了梯度消失的问题。
4. 实例化
ResNet 模型model =
ResNet()
这样就完成了自定义的
CNN 模型到
ResNet 模型的转换。如果您需要训练这个
模型,可以使用
PyTorch提供的训练框架进行训练。
到此这篇resnet模型(ResNet模型)的文章就介绍到这了,更多相关内容请继续浏览下面的相关 推荐文章,希望大家都能在编程的领域有一番成就!版权声明:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若内容造成侵权、违法违规、事实不符,请将相关资料发送至xkadmin@xkablog.com进行投诉反馈,一经查实,立即处理!
转载请注明出处,原文链接:https://www.xkablog.com/rfx/16053.html