当前位置:网站首页 > R语言数据分析 > 正文

resnet50网络结构代码(resnet152网络结构)



ResNet

(残差网络)是一种深度神经网络的结构,它通过残差块(Residual block)的堆叠来训练非常深的网络。下面是使用PyTorch

实现 ResNet

18的

代码

示例:

 import torch.nn as nn import torch.nn.functional as F  class ResidualBlock(nn.Module): def __init__(self, in_channels, out_channels, stride=1): super(ResidualBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.shortcut = nn.Sequential() if stride != 1 or in_channels != out_channels: self.shortcut = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_channels) )  def forward(self, x): residual = x out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(residual) out = F.relu(out) return out   class ResNet (nn.Module): def __init__(self, block, num_blocks, num_classes=10): super( ResNet , self).__init__() self.in_channels = 64  self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self.make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self.make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self.make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self.make_layer(block, 512, num_blocks[3], stride=2) self.avg_pool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512, num_classes)  def make_layer(self, block, out_channels, num_blocks, stride): strides = [stride] + [1] * (num_blocks - 1) layers = [] for stride in strides: layers.append(block(self.in_channels, out_channels, stride)) self.in_channels = out_channels return nn.Sequential(*layers)  def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = self.avg_pool(out) out = out.view(out.size(0), -1) out = self.fc(out) return out   def resnet 18(): return ResNet (ResidualBlock, [2, 2, 2, 2]) 

在上面的

代码

中,我们首先定义了残差块`ResidualBlock`,然后定义了主要的

ResNet

模型`

ResNet

`。需要注意的是,`

ResNet

`中包含了4个残差块的堆叠,每个残差块中又包含了2个卷积层,因此我们需要定义一个用于生成残差块的函数`make_layer`。最后,我们定义了一个`

resnet

18`函数,用于生成

ResNet

18模型。

到此这篇resnet50网络结构代码(resnet152网络结构)的文章就介绍到这了,更多相关内容请继续浏览下面的相关 推荐文章,希望大家都能在编程的领域有一番成就!

版权声明


相关文章:

  • qpainter绘制文字(qpainter绘制文字换行)2025-01-19 23:27:06
  • resnet模型结构(resnet18模型)2025-01-19 23:27:06
  • rmsprop算法怎么读(prim算法)2025-01-19 23:27:06
  • 7400pro提示纸盒无纸(m7400提示纸盒无纸)2025-01-19 23:27:06
  • aurocean怎么读(auroral怎么读)2025-01-19 23:27:06
  • druid怎么念(dri怎么读)2025-01-19 23:27:06
  • third,缩写(threaten缩写)2025-01-19 23:27:06
  • docker训练模型(docker_practice)2025-01-19 23:27:06
  • kubectl命令详解(kubectl drain命令)2025-01-19 23:27:06
  • 数组方法filter返回值(数组中filter方法)2025-01-19 23:27:06
  • 全屏图片