1、常规性能调优一:最优资源配置
Spark性能调优的第一步,就是为任务分配更多的资源,在一定范围内,增加资源的分配与性能的提升是成正比的 ,实现了最优的资源配置后,在此基础上再考虑进行后面论述的性能调优策略。
资源的分配在使用脚本提交Spark任务时进行指定,标准的Spark任务提交脚本如代码清单所示
可以进行分配的资源如下表所示
调节原则:尽量将任务分配的资源调节到可以使用的资源的最大限度
对于具体资源的分配,分别讨论Spark的两种Cluster运行模式:
第一种是Spark Standalone模式,你在提交任务前,一定知道或者可以从运维部门获取到你可以使用的资源情况,在编写submit脚本的时候,就根据可用的资源情况进行资源的分配,比如说集群有15台机器,每台机器为8G内存,2个CPU core,那么就指定15个Executor,每个Executor分配8G内存,2个CPU core。
第二种是Spark Yarn模式,由于Yarn使用资源队列进行资源的分配和调度,在表写submit脚本的时候,就根据Spark作业要提交到的资源队列,进行资源的分配,比如资源队列有400G内存,100个CPU core,那么指定50个Executor,每个Executor分配8G内存,2个CPU core。
对上表中的各项资源进行了调节后,得到的性能提升如下表所示
生产环境Spark submit脚本配置
参数配置参考值:
旧版本Spark资源调优情况
1)资源运行情况
2)资源运行中的集中情况
(1)实践中跑的Spark job,有的特别慢,查看CPU利用率很低,可以尝试减少每个executor占用CPU core的数量,增加并行的executor数量,同时配合增加分片,整体上增加了CPU的利用率,加快数据处理速度
(2)发现某job很容易发生内存溢出,我们就增大分片数量,从而减少了每片数据的规模,同时还减少并行的executor数量,这样相同的内存资源分配给数量更少的executor,相当于增加了每个task的内存分配,这样运行速度可能慢了些,但是总比OOM强
(3)数据量特别少,有大量的小文件生成,就减少文件分片,没必要创建那么多task,这种情况,如果只是最原始的input比较小,一般都能被注意到;但是,如果是在运算过程中,比如应用某个reduceBy或者某个filter以后,数据大量减少,这种低效情况就很少被留意到
3)运行资源优化配置
一个CPU core同一时间只能执行一个线程。而每个Executor进程上分配到的多个task,都是以每个task一条线程的方式,多线程并发运行的
一个应用提交的时候设置多大的内存?设置多少Core?设置几个Executor?
1、运行资源优化配置 - num-executors
参数说明:该参数用于设置Spark作业总共要用多少个Executor进程来执行。Driver在向YARN集群管理器申请资源时,YARN集群管理器会尽可能按照你的设置来在集群的各个工作节点上,启动相应数量的Executor进程。这个参数非常之重要,如果不设置的话,默认只会给你启动少量的Executor进程,此时你的Spark作业的运行速度是非常慢的
参数调优建议:每个Spark作业的运行一般设置50~100个左右的Executor进程比较合适,设置太少或太多的Executor进程都不好。设置的太少,无法充分利用集群资源;设置的太多的话,大部分队列可能无法给予充分的资源
2、运行资源优化配置 - executor-memory
参数说明:该参数用于设置每个Executor进程的内存。Executor内存的大小,很多时候直接决定了Spark作业的性能,而且跟常见的JVM OOM异常,也有直接的关联
参数调优建议:每个Executor进程的内存设置4G~8G较为合适。但是这只是一个参考值,具体的设置还是得根据不同部门的资源队列来定。可以看看自己团队的资源队列的最大内存限制是多少,num-executors * executor-memory,是不能超过队列的最大内存量的。此外,如果你是跟团队里其他人共享这个资源队列,那么申请的内存量最好不要超过资源队列最大总内存的1/3~1/2,避免你自己的Spark作业占用了队列所有的资源,导致别的同事的作业无法运行。
3、运行资源优化配置 - executor-cores
参数说明:该参数用于设置每个Executor进程的CPU core数量。这个参数决定了每个Executor进程并行执行task线程的能力。因为每个CPU core同一时间只能执行一个task线程,因此每个Executor进程的CPU core数量越多,越能够快速地执行完分配给自己的所有task线程
参数调优建议:Executor的CPU core数量设置为2~4个较为合适。同样得根据不同部门的资源队列来定,可以看看自己的资源队列的最大CPU core限制是多少,再依据设置的Executor数量,来决定每个Executor进程可以分配到几个CPU core。同样建议,如果是跟他人共享这个队列,那么num-executors * executor-cores不要超过队列总CPU core的1/3~1/2左右比较合适,也是避免影响其他同事的作业运行
4、运行资源优化配置 - driver-memory
参数说明:该参数用于设置Driver进程的内存
参数调优建议:Driver的内存通常来说不设置,或者设置1G左右应该就够了。唯一需要注意的一点是,如果需要使用collect算子将RDD的数据全部拉取到Driver上进行处理(或者是用map side join操作),那么必须确保Driver的内存足够大,否则会出现OOM内存溢出的问题
5、运行资源优化配置 - spark.default.parallelism
参数说明:该参数用于设置每个stage的默认task数量,也可以认为是分区数。这个参数极为重要,如果不设置可能会直接影响你的Spark作业性能
参数调优建议:Spark作业的默认task数量为500~1000个较为合适。很多人常犯的一个错误就是不去设置这个参数,那么此时就会导致Spark自己根据底层HDFS的block数量来设置task的数量,默认是一个HDFS block对应一个task。通常来说,Spark默认设置的数量是偏少的(比如就几十个task),如果task数量偏少的话,就会导致你前面设置好的Executor的参数都前功尽弃。试想一下,无论你的Executor进程有多少个,内存和CPU有多大,但是task只有1个或者10个,那么90%的Executor进程可能根本就没有task执行,也就是白白浪费了资源!因此Spark官网建议的设置原则是,设置该参数为num-executors * executor-cores的2~3倍较为合适,比如Executor的总CPU core数量为300个,那么设置1000个task是可以的,此时可以充分地利用Spark集群的资源
6、运行资源优化配置 - spark.storage.memoryFraction
参数说明:该参数用于设置RDD持久化数据在Executor内存中能占的比例,默认是0.6。也就是说,默认Executor 60%的内存,可以用来保存持久化的RDD数据。根据你选择的不同的持久化策略,如果内存不够时,可能数据就不会持久化,或者数据会写入磁盘
参数调优建议:如果Spark作业中,有较多的RDD持久化操作,该参数的值可以适当提高一些,保证持久化的数据能够容纳在内存中。避免内存不够缓存所有的数据,导致数据只能写入磁盘中,降低了性能。但是如果Spark作业中的shuffle类操作比较多,而持久化操作比较少,那么这个参数的值适当降低一些比较合适。此外,如果发现作业由于频繁的gc导致运行缓慢(通过spark web ui可以观察到作业的gc耗时),意味着task执行用户代码的内存不够用,那么同样建议调低这个参数的值
7、运行资源优化配置 - spark.shuffle.memoryFraction
参数说明:该参数用于设置shuffle过程中一个task拉取到上个stage的task的输出后,进行聚合操作时能够使用的Executor内存的比例,默认是0.2。也就是说,Executor默认只有20%的内存用来进行该操作。shuffle操作在进行聚合时,如果发现使用的内存超出了这个20%的限制,那么多余的数据就会溢写到磁盘文件中去,此时就会极大地降低性能
参数调优建议:如果Spark作业中的RDD持久化操作较少,shuffle操作较多时,建议降低持久化操作的内存占比,提高shuffle操作的内存占比比例,避免shuffle过程中数据过多时内存不够用,必须溢写到磁盘上,降低了性能。此外,如果发现作业由于频繁的gc导致运行缓慢,意味着task执行用户代码的内存不够用,那么同样建议调低这个参数的值
总结:
1)num-executors:应用运行时executor的数量,推荐50-100左右比较合适
2)executor-memory:应用运行时executor的内存,推荐4-8G比较合适
3)executor-cores:应用运行时executor的CPU核数,推荐2-4个比较合适
4)driver-memory:应用运行时driver的内存量,主要考虑如果使用map side join或者一些类似于collect的操作,那么要相应调大内存量
5)spark.default.parallelism:每个stage默认的task数量,推荐参数为num-executors * executor-cores的2~3倍较为合适
6)spark.storage.memoryFraction:每一个executor中用于RDD缓存的内存比例,如果程序中有大量的数据缓存,可以考虑调大整个的比例,默认为60%
7)spark.shuffle.memoryFraction:每一个executor中用于Shuffle操作的内存比例,默认是20%,如果程序中有大量的Shuffle类算子,那么可以考虑其它的比例
到此这篇spark面试题总结(spark面试知识点)的文章就介绍到这了,更多相关内容请继续浏览下面的相关推荐文章,希望大家都能在编程的领域有一番成就!版权声明:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若内容造成侵权、违法违规、事实不符,请将相关资料发送至xkadmin@xkablog.com进行投诉反馈,一经查实,立即处理!
转载请注明出处,原文链接:https://www.xkablog.com/rfx/55185.html