全文链接:http://tecdat.cn/?p=31733
Copula方法是测度金融市场间尾部相关性比较有效的方法,而且可用于研究非正态、非线性以及尾部非对称等较复杂的相依特征关系(点击文末“阅读原文”获取完整代码数据)。
相关视频
因此,Copula方法开始逐渐代替多元GARCH模型的相关性分析,成为考察金融变量间关系的流行方法,被广泛地用于市场一体化、风险管理以及期货套期保值的研究中。
国内外学者对于尾部相关性和Copula方法已经有了深入的研究,提出多种Copula模型来不断优化尾部相关系数对于不同情况下股票之间相关性的刻画,对于股票的聚类方法也进行了改进和拓展,然而能够结合这些方法对于资产选择进行研究的较少。尤其是在面对现今股票市场海量级的股票数据,如何从股票间的尾部相关性挖掘到有效信息,得到能够有效规避风险的资产组合是很少有人研究的问题。并且大多尾部相关的分析都只停留在定性的分析中,并且多是在市场与市场之间,板块与板块之间的相关性分析,对于股票间定量的相关性研究还有不足。相信研究成果对于投资者有效的规避风险,寻求最佳的投资组合有较大的帮助。
本文结合Copula方法和聚类思想对大数量级的股票间尾部相关性进行分析,帮助客户构建混合Copula模型并计算股票间尾部相关系数,再根据尾部相关系数选用合理高效的聚类方法进行聚类,为投资者选择投资组合提供有效的建议。
上证A股数据
本文选取上证A股数据(查看文末了解数据免费获取方式),其数据来源于wind数据库。由于时间间隔较长,本文将通过对相关系数进行计算来分析其之间的相关性,然后再通过聚类分析将其合并来进行研究。具体步骤如下:
非参数核估计边缘分布
1,固定函数的参数,选择权重的初值为:1/ 3。对权重进行估计。
2,固定权重为第 1 步的估计值,选择参数的初值为第上一节的估计值,对函数的参数进行估计。
3,将第 2 步估计得到的参数值作为固定值,权重初值选择第 1 步的估计值,进行权重估计。
估计混合 Copula 权重
估计混合 Copula 模型的函数参数
生成随机数
计算每个不同类时的 k-means 聚类结果,并计算平均偏差,且画出图形
点击标题查阅往期内容
01
02
03
04
当聚类数目为 7 时的 k-means 聚类
上尾
Average square within cluster
下尾
Average square within cluster
输出上尾和下尾相关系数
本文将 Copula方法应用到股票市场的相关分析中,以上证A股数据作为研究对象,基于 Copula方法构建了对不同投资组合的风险和收益的预测模型;其次,将聚类思想应用到股票选择中,将选择出来的股票进行聚类分析,得出各个聚类结果。本文不仅考虑了股票之间的相关关系,还考虑了它们之间的相关性。
输出股票类别
数据获取
本文中分析的数据会员群,扫描下面二维码即可加群!
获取全文完整代码数据资料。
本文选自《MATLAB、R基于Copula方法和k-means聚类的股票选择研究上证A股数据》。
点击标题查阅往期内容
到此这篇ewma模型推导(ewma模型和garch)的文章就介绍到这了,更多相关内容请继续浏览下面的相关推荐文章,希望大家都能在编程的领域有一番成就!版权声明:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若内容造成侵权、违法违规、事实不符,请将相关资料发送至xkadmin@xkablog.com进行投诉反馈,一经查实,立即处理!
转载请注明出处,原文链接:https://www.xkablog.com/rfx/68265.html