当前位置:网站首页 > 自然语言处理(NLP) > 正文

【Tensorflow+自然语言处理+LSTM】搭建智能聊天客服机器人实战(附源码、数据集和演示 超详细)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~

一、自然语言处理与智能

自然语言处理技术是智能客服应用的基础,在自然语言处理过程中,首先需要进行分词处理,这个过程通常基于统计学理论,分词的精细化可以提升智能客服的语言处理能力,统计分词和马尔可夫模型是常用的方法,但在非常用词汇的识别精度方面稍显逊色,而精度高低直接影响分词结果的准确性,多样性分词有助于发现形式上的不合理性

自然语言处理技术是智能客服中的重要的环节,也是决定智能客服应用质量好坏和问题处理效率高低的关键因素,创建智能客服通常系统先进行大量学习来充实语言知识库,并结合各种典型案例提升系统的处理能力。智能客服系统重点关注三部分:

1:知识库完善

2:服务满意度

3:处理未知场景的自我学习能力

与传统人工客服相比 智能客服应用一般具有以下优势

可以提供24小时无间断在线服务。

具备持续自主学习能力 。

处理速度快,处理效率高,

可以应对短时大容量服务请求。

成本优势。

从用户问题到答复输出涉及的流程基本框架如下图

 二、智能应用开发库如下

 Gensim 

 NLTK 

SpaCy 

TensorFlow TensorFlow是一个基于数据流编程(dataflow programming)的系统,被广泛应用于图形分类、音频处理、推荐系统和自然语言处理等场景的实现,提供基于Python语言的四种版本:CPU版本(tensorflow)、GPU加速版本(tensorflow-gpu)以及每日编译版本(tf-nightly、tf-nightly-gpu)。

 Theano

Keras

三、充实智能客服的情感

智能客服系统既依赖于专业性数据,也与自然处理理解等人工智能技术紧密相关,在解决用户业务诉求的过程中,难免用到用户咨询以及无法解决的问题等状况,因此提升其情感分析能力,具备多维度服务能力,对提高客户整体满意度有十分重要的积极意义,智能客服,人工客服和用户之间的关系可以简要概括如下图

智能客服处理流程如下图

到此这篇【Tensorflow+自然语言处理+LSTM】搭建智能聊天客服机器人实战(附源码、数据集和演示 超详细)的文章就介绍到这了,更多相关内容请继续浏览下面的相关推荐文章,希望大家都能在编程的领域有一番成就!

版权声明


相关文章:

  • 【人工智能】NLP入门指南:自然语言处理基础全解析2024-10-30 22:55:18
  • [NLP] 自然语言处理 --- NLP入门指南_nlp自然语言处理难不难学2024-10-30 22:55:18
  • 自然语言处理(NLP)知识结构总结2024-10-30 22:55:18
  • 自然语言处理(NLP)入门2024-10-30 22:55:18
  • 自然语言处理发展的四大阶段2024-10-30 22:55:18
  • 引领AI变革:边缘计算与自然语言处理结合的无尽可能2024-10-30 22:55:18
  • SpringBoot进行自然语言处理,利用Hanlp进行文本情感分析2024-10-30 22:55:18
  • 大模型应用解决方案:基于ChatGPT和GPT-4等Transformer架构的自然语言处理_国内大模型与gpt较高下2024-10-30 22:55:18
  • 中文自然语言处理入门实战2024-10-30 22:55:18
  • 自然语言处理NLP概述2024-10-30 22:55:18
  • 全屏图片